
Anyone who has been exposed to
Team Software ProcessSM (TSPSM)/

Personal Software ProcessSM (PSPSM)
knows that its life-cycle model is based on
software development, but what about
TSP/PSP for software maintenance? This
article tells how an inexperienced team
created a TSP/PSP life-cycle model for
corrective maintenance that allowed it to
finish well ahead of schedule yielding a 76
percent increase in problems fixed and
reducing defects by 38 percent.

Background
The Naval Air Systems Command’s
(NAVAIR) AV-8B Joint System Support
Activity (JSSA) has successfully applied
TSP/PSP to new software development
and to software maintenance projects for
three years.

In February 2001, AV-8B’s Joint
Mission Planning System (AVJMPS) team
began applying the TSP/PSP traditional
development life-cycle model to the
AVJMPS software development project.

In the spring of 2002, AV-8B’s Mission
Support Computer (MSC) software engi-
neering team began the H2.0 Block
Upgrade maintenance software effort
applying TSP/PSP. Their effort under

H2.0 Block Upgrade was primarily main-
tenance. They found that by adapting the
TSP life-cycle model to better fit mainte-
nance activity, they were able to isolate and
measure rework activities and drive down
defect rates while increasing productivity.

Proxies were used to size each prob-
lem fix in terms of estimated hours
instead of source lines of code (SLOC).
There is typically no correlation between
the solution of the problem and SLOC.
There is a correlation between completion
of the problem and time to fix.

The MSC Software
Maintenance Team
The MSC Operational Flight Program
(OFP), a real-time embedded program
running on a PowerPC processor, pro-
vides mission computer functionality for
the AV-8B Harrier II+. The OFP com-
prises 700,000 SLOC, mostly in C++.

The five-member H2.0 MSC software
engineering team was relatively inexperi-
enced. Two team members had experience
working with the MSC OFP software and
the toolset. One of these two was newly
promoted to the software lead position
having no prior experience in this posi-
tion. Out of the three new team members,
only one was familiar with the toolset, and
none of them were experienced in the
problem domain. The teams primary task-
ing was corrective maintenance (i.e., fixing
software defects).

It was obvious to JSSA management
and the H2.0 software team that the team
required startup time to learn the toolset,
the MSC OFP software, and TSP/PSP.

Maintenance and
Development Life Cycles
Are Not a Perfect Match
The MSC software engineering team
began development with the traditional
development life-cycle phases, shown in
Figure 1, which are supported in TSP/PSP
training and by the TSP/PSP tool. The
team, however, soon realized that this life
cycle did not address problems associated

with software maintenance.
The team found that the TSP tradi-

tional life cycle, as shown in Figure 1, did
not include a phase for problem identifi-
cation. Identifying the problem, recreating
the problem in controlled conditions, and
identifying the solution are critical activi-
ties in the first steps of software mainte-
nance. The ISO [International Organiza-
tion for Standardization]/IEC [Inter-
national Electronical Commission] Stan-
dard 12207 [1] describes these activities in
the Problem Modification and Analysis
step of the maintenance life cycle.

Next, the team noted that most soft-
ware changes did not affect high-level
design, and many did not affect detailed-
level design. Most changes fell into the
corrective maintenance category, resulting
from missing or misinterpreted require-
ments, coding logic errors, or missing
source code.

The team also experienced cases
where finding the correct solution
required iteration through the TSP life-
cycle phases. For example, the proposed
solution might have an unanticipated side
effect, which required iteration back
through design, code, and test. There are
also cases where determining the com-
plete scope of the problem required mul-
tiple probes into the design and code.

The traditional TSP life cycle does not
accommodate iteration. While it is possi-
ble to add iterations through the phases to
one’s plan, the original work plan for
development activity is based on a single
iteration from high-level design through
integration test. Consequently all the
earned value is associated with the origi-
nally planned iteration, and additional iter-
ations show up as unplanned work with
no earned value.

The Lite Life-Cycle Model
Is Born
TSP teaches that your process must be
your own and that TSP can be adapted to
fit the way your organization does busi-
ness. The H2.0 MSC software engineering
team adapted the TSP life cycle to fit their

A TSP Software Maintenance Life Cycle

Chris A. Rickets
Naval Air Systems Command

Team Software ProcessSM (TSPSM) and Personal Software ProcessSM (PSPSM) have always been associated with software devel-
opment, but what about TSP/PSP for software maintenance? This article discusses how TSP/PSP was adapted for use on
a software maintenance project, resulting in a new proxy for estimating maintenance activity and the creation of a TSP soft-
ware maintenance life cycle.

22 CROSSTALK The Journal of Defense Software Engineering March 2005

HLD High-Level Design
HLDINSP High-Level Design

Inspection
DLD Detailed-Level

Design
DLDR Detailed-Level

Design Review
DLDINSP Detailed-Level

Design Inspection
CODE Code
CR Code Review
CODEINSP Code Inspection
COMPILE Compile
UT Unit Test
IT Integration Test
ST System Test

Figure 1: TSP Traditional Development Life
Cycle Phases

March 2005 www.stsc.hill.af.mil 23

team and the maintenance activity.
The H2.0 MSC software engineering

team coined the phrases classic and lite to
describe their software lifecycle models.
The classic life-cycle model is the tradi-
tional TSP development model, while lite
life-cycle model refers to the maintenance
life-cycle model created by the team. The
phases of the lite model, shown in Figure
2, specifically address the shortcomings
noted in the previous section.

The lite life cycle adds phases and activ-
ities specific to software maintenance, and
consolidates phases from the traditional
life-cycle model to allow for iteration. The
lite life cycle preserves review and inspec-
tion activities, although they are less visible
and may be reordered from the traditional
approach. The following paragraphs
explain each of the lite life-cycle phases.
• IDENT. During the identification

phase, the software engineer works
with the systems engineer (SE)1 to ver-
ify the requirements and demonstrate
the problem. Early involvement of the
SE ensures that the problem as speci-
fied in the Problem Report (PR) is cor-
rect. Often, the PR describes symp-
toms rather than identifying the root
cause. The desired solution in the PR
may also be incomplete. Given an
understanding of the problem, the
software engineer then identifies the
cause of failure condition within the
source code and demonstrates the
source code problem and failure to a
peer. If the peer agrees with the soft-
ware engineer that the problem has
been correctly and completely identi-
fied, the software engineer can then
move to the INWRK [in-work] phase.

• INWRK. The in-work phase encapsu-
lates design, code, and unit test to
allow for iteration in the maintenance
environment.

• Design and Design Review. If a
design change is needed, the software
engineer implements the changes and
reviews the changes using his or her
design review checklist. Inspection is
deferred to the INSP [inspection]
phase, except in cases where a sub-
stantial change to the design is
required, or where there are special cir-
cumstances, e.g., a change to a class in
the Common OFP2. The decision to
delay inspection of small, simple
design changes to the INSP phase is
based on several factors. First, the cost
of putting together an inspection
package for a one- to three-line source
code change outweighs the benefit.
Second, the risk of delaying the
inspection has proved to be accept-

able. This risk is mitigated by the
team’s experience that small changes
are typically identified in the IDENT
phase, where a peer has already con-
curred with the change.

• Code and Code Review. Source code
changes are made, based on baseline
versions of the OFP. The software
engineer reviews their changes using a
code review checklist. Code inspection
is deferred to the INSP phase.

• Compile. The source code is com-
piled until all code compiles cleanly.

• Unit Test. Unit testing is then per-
formed. If the fix for the PR fails, the
software engineer continues to solve
the problem, iterating through design,
code, and unit test until a successful
solution is achieved and any negative
side effects have been eliminated.
When the desired results are obtained,
the SE is shown the unit test results as
an additional check that the solution is
correct and complete. This conforms
to the maintenance implementation
ISO/IEC activity described in 5.5.3.2
(b) of Standard 12207 [1]

• INSP. The inspection phase consoli-
dates both design and code inspec-
tions, except in cases where complex
solutions require that design and code
inspections be conducted separately.
The inspection package includes the
inspection log, modified design and
source code files, the PR, a document
describing where changes were made
and why, and a copy of the unit test
plan. The addition of the unit test plan
accords with the maintenance imple-
mentation ISO/IEC activity as
described in 5.5.3.2 (a) of Standard
12207 [1]. The addition of a document
describing where and why changes
were made is a road map for the
inspector. The team made this a
mandatory requirement when it was
found that this information dramati-
cally reduced inspection times.

• IT. Integration test is performed
using a developmental baseline in the
lab environment (i.e., the actual hard-
ware). The software engineer uses the
PR test plan, and the SE may perform
additional tests to verify the correct-
ness and completeness of the fix. If
either the software engineer or the SE
determines that the fix is incomplete,
the software engineer continues to log
his work in this phase. Once the soft-
ware engineer and SE agree that the
fix is correct, the PR is then consid-
ered completed and available for sys-
tem testing; although, there are excep-
tions as indicated under the RA

[rework assessment] and ST [system
test] phases.

• RA. The rework assessment phase is
added to a PR, in the TSP workbook,
when questions arise about a complet-
ed PR that requires the software engi-
neer to investigate and resolve. The
software team found that there was
often considerable time lag between
completion of the IT phase and the
closing of the PR by the SE. The SE
would often have forgotten his or her
initial consultation with the software
engineer or would question whether
the fix addressed something that may
have been overlooked by the require-
ments. These questions would cause
the software engineers to spend a con-
siderable amount of time becoming
reacquainted with a PR completed
back under IT. This phase is used to
capture time spent in determining if a
software problem still exists for the PR
in question. If no problem exists, the
PR is closed by the SE. If a problem is
identified, the ST phase is then entered.

• ST. When a problem is found in sys-
tem test that is related to an allocated
PR, an ST phase is added for that PR.
The software engineer will log his or
her time in this phase until the prob-
lem is resolved. Problems detected
during the system test phase are used
as the quality indicator for the H2.0
team. The team set its quality goal at
having no more than 10% of PR’s
being rejected in system test.
A mapping of the development classic

life-cycle phases to the maintenance lite
life-cycle phases is shown in Figure 3 (see
next page).

Customer’s Perspective on
TSP Maintenance Activities
The direct customer for the software team
is the Block lead and the Integrated
Product Team (IPT) lead. The customer
defines project goals for maintenance
projects and levels of success are estab-
lished during TSP Meeting 1, just as in
development projects. The customer par-
ticipates in launches and postmortems,

IDENT Identification
INWRK In Work
INSP Inspection
IT Integration Test
RA Rework

Assessment
ST System Test

HLD
HLDINSP

IDENT

DLD
DLDR
DLDINSP
CODE
CR
CODEINSP
COMPILE
UT

INWRK

INSP
IT IT

RA
ST ST

Figure 2: TSP Maintenance Life Cycle Phases

A TSP Software Maintenance Life Cycle

just as in development projects.
“TSP has brought credibility to esti-

mates and commitments to perform
worthwhile in a maintenance environ-
ment,” said AV-8B JSSA’s IPT Lead
Dwayne Heinsma. “We are no longer
questioned on the basis of estimating our
requirements because we have the data
and the performance to back it up.”

Heinsma continued, “TSP has also
contributed significantly to our ability to
establish organizational improvement
goals in the maintenance area. We did not
have the historical measures that baselined
our performance previously and today we
now have a process by which we update
our organizational performance baseline
using project postmortem data.”

Heinsma also stated, “Today, there is a
strong push from NAVAIR leadership to
establish improvement goals (productivity,
quality, cost, and schedule) and show
progress toward meeting those goals. With
TSP, we have established the baseline; we

have the improvement goals and the data
showing progress toward the goals. If we
are not meeting the goals, TSP provides us
insight into what is holding us back, and
we can focus on those elements that will
help us improve most significantly.”

The H4.0 Block Lead Greg Janson for
the current software maintenance effort
added, “I feel that TSP is worthwhile from
a customer point of view. TSP provides a
good quantitative tool for performance
assessment. Qualitatively, it creates a solid
basis for estimating that is difficult to
question.”

Results
The H2.0 team finished their tasking well
ahead of schedule. In fact, the H2.0 team
was able to reassess how many additional
PR’s could be solved in the time remaining
on the project. The team initially estimat-
ed 102 PR’s over a two-year period. The
team actually completed over 180 PR’s.
This is a considerable accomplishment,
given the team’s relative lack of domain
knowledge and the fact that the first two
and one-half months of the project were
spent completing TSP training. During
this time, the H2.0 team also developed
and documented processes for the H2.0
software development effort. The team
came very close to their quality goal,
achieving a 13 percent rejection rate in
system test.

The AV-8B software team is now
working on the next block upgrade to the
AV-8B MSC OFP. They continue to refine
the lite life cycle to improve software qual-
ity. In this block upgrade, their goal is to
reduce the rework time measured in the
RA phase, and to refine their defect log-
ging to yield more fine-grained informa-
tion earlier in the life cycle.u

Reference
1. ISO [International Organization for

Standardization]/IEC [International
Electrotechnical Commission] 12207.
ISO/IEC 12207: Information Tech-
nology – Software Life-Cycle Proc-
esses. 1st ed. ISO/IEC, 1995.

Notes
1. At the AV-8B JSSA, the systems engi-

neering team is responsible for system
and software requirements.

2. Common OFP is a basic set of soft-
ware built upon for different aircraft
with common fundamental require-
ments but differing missions and/or
systems.

Team Software Process

24 CROSSTALK The Journal of Defense Software Engineering March 2005

HLD
HLDINSP

IDENT

DLD
DLDR
DLDINSP
CODE
CR
CODEINSP
COMPILE
UT

INWRK

INSP
IT IT

RA
ST ST

Figure 3: Mapping from Development to
Maintenance Life Cycle About the Author

Chris A. Rickets is a
computer scientist in the
software engineering
group at the AV-8B Joint
System Support Activity.
He has been working on

Embedded Avionics Systems for the past
14 years. He was the H2.0 Harrier Block
Upgrade Software Lead and is currently
working on the H4.0 Harrier Block
Upgrade. Rickets has both a Bachelor of
Science and Master of Science in com-
puter science from California State
University Chico.

CMDR, NAWCWD
41K300D MS 2004
507 E Corsair ST
China Lake, CA 93555-6110
Phone: (760) 939-5838
E-mail: chris.rickets@navy.mil

Software Process
Dashboard Initiative
http://processdash.sourceforge.net
The Software Process Dashboard Project is an open-source ini-
tiative to create a Personal Software ProcessSM (PSPSM)/Team
Software ProcessSM (TSPSM) support tool. The Process
Dashboard is an existing support tool originally developed in
1998 by the U.S. Air Force, and has continued to evolve under
the open-source model. It is freely available for download under
the conditions of the Gnu’s Not Unix Public License. The
Process Dashboard supports data collection, planning, tracking,
data analysis, and data export. The major strengths of the
Process Dashboard are ease of use, flexibility/extensibility, plat-
form independence, and price. The Team Process Dashboard is
currently under development.

Software Engineering Institute
www.sei.cmu.edu
The Software Engineering Institute (SEISM) is a federally fund-
ed research and development center sponsored by the
Department of Defense to provide leadership in advancing the
state of the practice of software engineering to improve the
quality of systems that depend on software. SEI helps organiza-
tions and individuals improve their software engineering man-
agement practices. The site features complete information on
models the SEI is currently involved in developing, expanding,
or maintaining, including the Team Software ProcessSM,
Personal Software ProcessSM, Capability Maturity Model®

Integration, Capability Maturity Model® for Software, Software
Acquisition Capability Maturity Model®, Systems Engineering
Capability Maturity Model®, and more.

WEB SITES

